Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering
نویسنده
چکیده
Monogamy inequalities for the way bipartite Einstein-Podolsky-Rosen (EPR) steering can be distributed among N systems are derived. One set of inequalities is based on witnesses with two measurement settings, and may be used to demonstrate correlation of outcomes between two parties, that cannot be shared with more parties. It is shown that the monogamy for steering is directional. Two parties cannot independently demonstrate steering of a third system, using the same two-setting steering witness, but it is possible for one party to steer two independent systems. This result explains the monogamy of two-setting Bell inequality violations and the sensitivity of the continuous variable (CV) EPR criterion to losses on the steering party. We generalize to m settings. A second type of monogamy relation gives the quantitative amount of sharing possible, when the number of parties is less than or equal to m, and takes a form similar to the Coffman-Kundu-Wootters relation for entanglement. The results enable characterization of the tripartite steering for CV Gaussian systems and qubit Greenberger-Horne-Zeilinger and W states.
منابع مشابه
Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof
In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to...
متن کاملBell’s Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality
Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell's nonlocality. Among which, Bell's nonlocality is the strongest type. Bell's nonlocality for quantum states is usually detected by violation of some Bell's inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits. Steering is a manifestati...
متن کاملDemonstrating continuous variable Einstein–Podolsky– Rosen steering in spite of finite experimental capabilities using Fano steering bounds
Received October 30, 2014; revised January 22, 2015; accepted January 27, 2015; posted January 29, 2015 (Doc. ID 225865); published February 24, 2015 We show how one can demonstrate continuous-variable Einstein–Podolsky–Rosen (EPR) steering without needing to characterize entire measurement probability distributions. To do this, we develop a modified Fano inequality useful for discrete measurem...
متن کاملSteering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox.
The concept of steering was introduced by Schrödinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational...
متن کاملThe Einstein-Podolsky-Rosen State Maximally Violates Bell’s Inequalities
In their well-known argument against the completeness of quantum theory, Einstein, Podolsky, and Rosen (EPR) made use of a state that strictly correlates the positions and momenta of two particles. We prove the existence and uniqueness of the EPR state as a normalized, positive linear functional of the Weyl algebra for two degrees of freedom. We then show that the EPR state maximally violates B...
متن کامل